Skip to main content

Welcome to Acusight

Acusight is an integrated MLOps and container management platform designed to streamline the entire workflow from edge data collection to model training and infrastructure management. It provides a unified interface to manage Docker environments via Portainer while simultaneously offering a powerful, end-to-end data lifecycle pipeline for computer vision tasks.

Key Features

Unified Management

A single pane of glass for container orchestration (via Portainer) and MLOps data workflows.

Edge Device Integration

Securely register, approve, and manage edge devices with automated batch creation for incoming data.

Video & Timeline

CCTV-style multi-device WebRTC streaming grid with a global timeline for browsing historical events.

End-to-End Data Lifecycle

Sophisticated two-tier system moving data from raw ingestion through curated project pipeline.

Dataset Versioning

Create atomic, point-in-time snapshots with train/val/test splits for reproducible training.

Real-time Observability

Live monitoring via WebSockets with integrated Prometheus metrics and OpenTelemetry tracing.

Architecture Overview

The Acusight platform is built on a microservices architecture:
                          Browser/Client

                    ┌───────────┴───────────┐
                    │    Caddy (HTTPS)      │
                    └───────────┬───────────┘
                    ┌───────────┴───────────┐
                    │   Core Service (Go)   │◄──── Edge Agents
                    │     API Gateway       │
                    └───┬───────────────┬───┘
                        │               │
              ┌─────────┴────┐    ┌─────┴────────┐
              │ Data Service │    │  Portainer   │
              │    (MLOps)   │    │ (Containers) │
              └──────┬───────┘    └──────────────┘

        ┌────────────┼────────────┐
        │            │            │
   PostgreSQL      Redis       MinIO
  • Core Service: API gateway handling auth, device management, and Portainer proxy
  • Data Service: MLOps data pipeline for batches, annotations, and datasets
  • ML Service: Model training orchestration with MLFlow integration
  • Portainer: Container management for edge devices

Technology Stack

ComponentTechnology
FrontendReact, TypeScript, Vite, Tailwind CSS
Backend ServicesGo, Gin, GORM
DatabasePostgreSQL
Cache / JobsRedis
Object StorageMinIO (S3-compatible)
MonitoringPrometheus, Grafana, Alertmanager

Next Steps